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TECHNICAL MEMORBWDUM x-53459 

VARIATIONAL PROBLEMS AND THEIR SOLUTION BY THE ADJOIN" MET'HOD 

A v a r i a t i o n a l  problem typical  of those encountered i n  f l i g h t  mechanics 
is posed. 
its app l i ca t ion  t o  general  two-point boundary value problems. It is then 
s p e c i f i c a l l y  appl ied t o  the va r i a t iona l  problem. F ina l ly ,  the  p r a c t i c a l i t y  
of the a d j o i n t  method i s  i l l u s t r a t e d  by solving three  typ ica l  problems of 
exo-atmospheric f l i g h t  and one problem involving a n  ascent  through the 
atmosphere t o  low e a r t h  o r b i t .  

The a d j o i n t  technique is then developed i n  a manner' t o  i nd ica t e  

I. INTRODUCTION 

Many f l i g h t  mechanical problems requi re  t h a t  some "cost" c r i t e r i o n  
be extremized. A typ ica l  c r i t e r i o n  i s  that the  s c i e n t i f i c  payload of a 
rocket  booster  be maximized. Besides maximizing the payload, c e r t a i n  
func t iona l  r e l a t ionsh ips  among the "s ta te"  va r i ab le s  of the veh ic l e  must 
invar iab ly  be s a t i s f i e d  a t  the end poin t .  The calculus  of v a r i a t i o n s ,  a 
branch of c l a s s i c a l  mathematics under development f o r  over 250 years ,  
forms the bas i s  f o r  handling opt imizat ion problems of t h i s  type. Unfor- 
tuna te ly ,  t h i s  mathematical treatment leads t o  two-point boundary value 
problems which i n  themselves a r e  important stumblirrg blocks t o  a s t r a i g h t -  
forward app l i ca t ion  of the theory. 
a s  a t o o l  t o  solve the two-point boundary value problem which i n  turn 
allows the ideas  and r e s u l t s  of the c l a s s i c a l  calculus  of v a r i a t i o n s  t o  
be appl ied i n  a g r e a t  v a r i e t y  of i n t e r e s t i n g  and p r a c t i c a l  problems. The 
remainder of t h i s  t e x t  i s  devoted t o  formulating the v a r i a t i o n a l  problem, 
developing the a d j o i n t  method of s o l u t i o n  to  the s p l i t  boundary value 
problem, and applying the r e s u l t a n t  theory numerically t o  some t yp ica l  
t r a j e c t o r y  problems. No claim for mathematical r i g o r  i s  made. Necessary 
cont inui ty  requirements and the exis tence of der iva t ives  of the  required 
order  are assumed. The treatments and developments of the a d j o i n t  method 
a r e  fo r  the most p a r t  formal i n  nature but  t h e i r  u t i l i t y  and worth have 
been borne out  by the so lu t ion  of a number of p r a c t i c a l  problems. 

The a d j o i n t  method has been developed 



11. THE VARIATIONAL PROBLEM 

Consider a s e t  of ordinary f i r s t  order  d i f f e r e n t i a l  equations: 

iri = f i (x l ,  ... , xmy ul, ... , un) i = 1, ... , m (2.1)  

= fi(X,U) 

where the xi def ining the "state" of the system are the dependent va r i ab le s  
and the u1, ... , un a r e  the cont ro l  or forc ing  va r i ab le s  which are impl i c i t  
funct ions of t y  the independent va r i ab le ,  which here  is  taken as time. A 
so lu t ion  of t h i s  system i n  an  i n t e r v a l  to 5 t 5 tf is given by m func t ions ,  
x i ( t ) ,  and n funct ions,  u j ( t ) ,  such t h a t  t h e i r  s u b s t i t u t i o n  reduces equa- 
t ions  (2.1) t o  i d e n t i t i e s .  
The s t a t e  values a t  to, together  with to, are termed the i n i t i a l  boundary 
and the  s t a t e  values a t  tf together  with tf are c a l l e d  the terminal boun- 
dary. The v a r i a t i o n a l  problem cons i s t s  of extremizing a func t iona l  

The system i s  sa id  t o  have n degrees of freedom. 

sub jec t  t o  the d i f f e r e n t i a l  cons t r a in t s  (2.1)  and the  terminal  cons t r a in t s  

where the  El a r e  given constants .  
extrema1 requires  that the f i r s t  v a r i a t i o n  of t he  following func t iona l  
van i s h  : 

Employing the method of Lagrange, a n  

2 



where it is understood that a repeated subsc r ip t  implies summation mer 
its range, the q i ( t )  a r e  Lagrange mul t ip l i e r  func t ions ,  and va are Lagrange 
mu1 t i p 1  i e r  constants  . 

me vanishing of 6J l eads  to the following necessary conditions:  

where 

a) = 0 j = 1, ..., n au, 

is the  Hamil  tonian,  

i = 1, ..., m 
a = 1, ..., q 

3 



Notice t h a t  H i s  a constant  of the system s i n c e  

Subs t i tu t ing  (2.1),  (2.5),  and (2.6) f u r t h e r  y i e lds  

dH 
d t  1 1  1 1  i i  i i  
- = -4.k. + f - 4 .  + 0 = -4.k + 4 . k  = 0 .  

The necessary conditions given have i m p l i c i t l y  assumed t h a t  the 
i n i t i a l  s t a t e  boundary i s  known. Equations (2.5) and (2.6) a r e  the 
usual Euler-Lagrange equations.  Equations (2.8) and (2.9) express the 
t r ansve r sa l i t y  conditions a t  the terminal boundary. A so lu t ion  t o  the 
v a r i a t i o n a l  problem cons i s t s  of f inding funct ions x ( t ) ,  u ( t )  and q ( t )  
i n  the in t e rva l  to 5 t 5 tf such t h a t  equations (2.1)  and (2.5) a r e  
reduced t o  i d e n t i t i e s ,  equation (2.6) i s  s a t i s f i e d  and the boundary con- 
d i t i o n s ,  equations ( 2 . 3 ) ,  (2 .8)  and (2.9) a r e  s a t i s f i e d .  The u ( t )  a r e  
imp l i c i t l y  defined by (2.6) which means t h a t  so lu t ions  of the d i f f e r e n t i a l  
system (2 .1 )  and (2.6) a r e  determined by 2m + 2 boundary values  of which 
m + 1 values are provided by the assumption that the i n i t i a l  s tate bound- 
a r y  is  known and the remaining m + 1 values  a r e  obtained from the  
m + q + 1 terminal condi t ions,  (2.3),  (2.8),  and (2.9) by e l imina t ing  

Thus, an  extrema1 requi res  the so lu t ion  of a two-point Y1, ...) v 
boundary value problem. The na ture  of such a problem, as wel l  as the 
f a c t  that (2.1) and (2.5) a r e  normally h ighly  nonl inear ,  means t h a t  an 
a n a l y t i c  so lu t ion  i s  r a r e l y  possible  and a numerical s o l u t i o n  must be 
sought. Numerical so lu t ions  r equ i r e  t h a t  one complete boundary be known. 
The classical technique of so lu t ion  i s  t o  guess the  unknown i n i t i a l  bound- 
a r y  values  and t o  a d j u s t  them u n t i l  the terminal  boundary condi t ions are 
s a t i s f i e d .  This transforms the s p l i t  boundary value problem i n t o  an i n i t -  
i a l  value problem. The manner of so lu t ion  descr ibed i s  ca l l ed  the i n d i r e c t  
method s ince  the  cont ro l  v a r i a b l e s  are obtained i m p l i c i t l y  as funct ions of 
time and a r e  not  spec i f i ed  e x p l i c i t l y  and then modified i n  a manner such 
t h a t  (2.3) i s  s a t i s f i e d  while simultaneously extremizing ( 2 . 2 ) .  S teepes t  
descent  techniques a r e  of t h i s  l a t t e r  type which a r e  c a l l e d  d i r e c t  methods. 

* 
9'  

* 
I f  (2.3) a r e  m i n  number, then m of (2.8) and (2.9) a r e  superf luous.  
I f  (2.3) a r e  m + 1 i n  number, both (2.8) and (2.9) a re  unnecessary. 

4 



111. THE ADJOINT SOLUTION TO TWO-POINT BOUNDARY VALUE PROBLEMS 

I Consider a d i f f e r e n t i a l  system of the following type: 

~ fa! = Fa!(zl, ..., zZm) a! = 1, ..., 2m 
I 

(3.1) 

The Fa! a r e  supposed t o  be functions of the d i f f e r e n t i a l  dependent var iab les  
only and the  comnents concerning (2.1), except f o r  the cont ro l  va r i ab le s ,  
a r e  appl icable .  Let 

where Fa(t) i s  a nominal so lu t ion  of (3.1)) za(t) is a va r i ed  solution 
and the concept of a v a r i a t i o n  symbolized by 6 is discussed i n  Appendix I. 
The v a r i a t i o n s  i n  z ( t )  obviously induce ( to  f i r s t  order) a v a r i a t i o n  i n  
the Fa(t) as follows: 

82 f3 = 1, ...) 2m (3.3) B' 6Fa = Fa(" + 62) - Fa!(z) = 
B 

, Combining (3.1) and (3.3) yields  

or 

where the  interchange of d / d t  and 8 a r e  j u s t i f i e d  i n  Appendix I. The 

5 



equations ad jo in t  t o  (3.4) a r e  defined as 

. I  

where the pa a r e  the  a d j o i n t  va r i ab le s .  
va r i ab le s  (a lso ca l led  the inf luence funct ions)  is  indicated by the 
f 01 1 owing : 

The usefulness  of t he  a d j o i n t  

= o  

where (3.4) has been subs t i t u t ed  and the  f a c t  t h a t  a and B are dummy sum- 
mation symbols has been used. 
obvious 1 y 

Since pa 62, is  a constant  of the  system,  

(3.7) 

where f f  i s  the nominal terminal time. 
a d j o i n t  var iab les ;  they r e l a t e  v a r i a t i o n s  a t  the nominal terminal boundary 
t o  v a r i a t i o n s  a t  the i n i t i a l  boundary. 
t he  following form be imposed a t  the i n i t i a l  and terminal boundaries: 

Herein l i e s  the  usefu lness  of  the  

Again l e t  boundary condi t ions of 

6 

Ji) ( z ) ,  = 0 i = 1, ..., p 
L 
0 

,(j) (2) = 0 .  j = p + 1, ..., 2m - p + 1 
tf 

(3.8a) 

(3.8b) 



Boundary values on the a d j o i n t  var iab les  have no t  been imposed. A 
f u l  i n t e r p r e t a t i o n  can be attached t o  the following choice f o r  
s e t  of boundary values a t  the nominal terminal time: 

As  shown i n  Appendix I, a t  the nominal terminal t i m e ,  

where dza is  the t o t a l  d i f f e r e n t i a l  change i n  za a t  - tf. Thus, 

(3.10) 

Subs t i t u t ing  the  r e l a t i o n s  

i n t o  (3.11) r e s u l t s  i n  

(3.12) 

(3.13) 

7 



Subs t i tu t ing  (3.13) i n t o  (3.7) y ie lds  

o r  

(3.14a) 

p of the 6z)to a r e  eliminated i n  (3.14a) by using (3.8a). 

d d j )  are  spec i f ied ,  (3.14a) represents  2m - p + 1 equations f o r  one 

unknown d t f  and 2m - p unknowns, 8 2 . )  

by 2m - p t 1 in tegra t ions  of the a d j o i n t  equat ions.  
reduced by one i f  the nominal terminal time i s  determined by one of the  

terminal boundary conditions being s a t i s f i e d ,  say R (2m- p+l ) (Z)ff = 0. 

Then , 

Assuming the 

t f  . Equations (3.14a) a r e  generated 
to 

This number may be  

(2m- p+l  ) 
- dz,]- = 0. i = 1, ..., 2m dR (2)- - (2m-p+l) an aZ 

tf  a tf 

I f  the ad jo in t  equations a r e  in tegra ted  wi th  boundary condi t ions,  

(3.9b) 

a s t ra ightforward ca l cu la t ion  shows t h a t  (3.14a) reduce t o  

8 

(3.14b) 



Of course, these last  operations a r e  not possible  i f  the designated 
terminal boundary condition cannot be s a t i s f i e d  from the i n i t i a l  boundary. 

The implementation of t h e  ad jo in t  method is an i t e r a t i v e  process. 
This means t h a t  each successive s tep  is  dependent on the previous s t e p .  
The process i s  sa id  t o  have converged when the  d i f f e r e n t i a l  equations and 
the terminal boundary conditions a r e  reduced t o  i d e n t i t i e s  by the so lu t ion  
functions.  
assuming a nominal Zf ,  guessing the missing i n i t i a l  boundary values,  and 
in tegra t ing  (3.1) forward i n  time u n t i l  t = tf. 

When to is f ixed ,  a nominal so lu t ion  E ( t )  i s  generated by 
- 

Normally t h e .  

and changes i n  Ef and the f r e e  i n i t i a l  boundary values are necessary. 
These changes a r e  computed by using the i n i t i a l  conditions of (3.9a) t o  
i n t eg ra t e  the  ad jo in t  equations (3.5) backward i n  time u n t i l  t = to, 
This y ie lds  the  

needed f o r  (3.14a). Since (3.14a) i s  general ly  the r e s u l t  of a l i n e a r  
treatment of a nonlinear system, i t  i s  unreasonable t o  expect it t o  pre- 
d i c t  the whole correct ion necessary d u r i n g  the ea r ly  steps of the con- 
vergence process. Consequently, only f r a c t i o n a l  portions of the  terminal 
boundary condition v io la t ions  a r e  used i n  (3.14a) i n i t i a l l y ;  i.e., the  

are replaced by 

where 0 C c k  5 1. As convergence is a t t a i n e d ,  the Ck a r e  increased 
s ince  the l i n e a r  approximation i s  becoming b e t t e r  and b e t t e r .  Using these 

9 
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’t f 

(3.14a) i s  used t o  ca l cu la t e  the new i n i t i a l  boundary as 

..>:’” = .J0 old + ..i>, 
0 

and the new terminal time as 

-new The s ta te  equations are aga in  in tegra ted  forward i n  time u n t i l  t = tf 
Now the 

-new 
tf  

w i l l  have e i t h e r  increased or  decreased. 

(1) I f  they have increased, the changes ca lcu la ted  are too  
l a rge  and the l i n e a r i t y  assumptions have obviously been 
v io la ted .  This i s  cor rec ted  by halving the  computed 
changes and r e in t eg ra t ing  the  state equations forward. 
This secondary i t e r a t i o n  is  done as many times as required 
t o  decrease the  terminal  boundary condi t ion  v i o l a t i o n s .  
When they have f i n a l l y  been reduced, the  a d j o i n t  equations 
a r e  aga in  in tegra ted  backwards according t o  the prevtous 
s tep .  

(2) I f  they have decreased, the  a d j o i n t  equations are inanedi- 
a t e l y  in tegra ted  backwards and the  previous s t e p  repeated.  

This process continues u n t i l  t he  terminal boundary condi t ions are satis- 
f i e d  t o  within some tolerance.  The secondary i t e r a t i o n  descr ibed above 
I s  e s s e n t i a l  s ince  i t  can reduce the  number of times the  a d j o i n t  equa- 
t i ons  a re  in tegra ted .  This r e s u l t s  i n  a l a r g e  time saving s ince  these  
equations a r e  usua l ly  r a t h e r  lengthy and involved. 

1 0  

I 



IV.  THE ADJOINT SOLUTION O F  THE VARIATIONAL PROBLIPI 

Seeking to  l i m i t  the  scope of the discussion while a t  the same ;Iirne 
i l l u s t r a t i n g  the appl ica t ion  of the a d j o i n t  technique t o  a problem 0: 

some i n t e r e s t ,  a pa r t i cu la r  type of v a r i a t i o n a l  problem i s  considered 
here: the time minimal problem. The funct ional  t o  be minimized i s ,  
thus , 

d t  = tf - t 
J = f f  0 )  (4.1) 

i .e . ,  fo(xl,. .. , *,u1. . .. , %) = 1. Further assumptions a r e  that the  
i n i t i a l  boundary and the terminal boundary (except fo r  tf) a r e  known. 
The problem, then, i s  t o  move from an i n i t i a l  known s t a t e  t o  a terminal 
known s t a t e  i n  the l e a s t  time. I n  order t h a t  the scheme out l ined i n  Sec- 
t i o n  I11 be appl icable  t o  t h i s  va r i a t iona l  problem, it i s  necessary that 
the dependence of the d i f f e r e n t i a l  equations on the  control  va r i ab le s  be 
removed. This can be done i n  pr inc ip le  by using (2.6) where the r e l a t i o n s  
a r e  made expl ic i t  as 

u = Uj(XY4). j = 1, ..., n 
j 

The d i f f e r e n t i a l  equations of t h i s  v a r i a t i o n a l  problem become 

ki = f i  0 x,  u(x,q) 

qi [af;l = 0, 

sub jec t  t o  the boundary conditions 

k , i  = 1, ..., rn 
j = 1, ..., n 

a = 1, ... , q 

(4.2) 

(4.6) 

11 



(4.7) 

Equations (4.3) and (4.4) can be w r i t t e n  i n  the  form (3.1) by making the 
iden t i f i ca t ions  

i = f i  a = 1, ..., m 
(4.9) a 2 = x  a! i’ 

za E q i J  a! = m + 1, ..., 2m 

Then , 

k = Fa(x,q). a = 1, ..., 2m. a 

Boundary condi t ions ( 4 . 6 ) ,  (4.7), and (4.8) are m + 1 i n  number if the 
v1, . . . , vq are eliminated and correspond t o  (3.8) which are m + 1 i n  
number s ince  the i n i t i a l  s t a t e  boundary has been assumed known. Con- 
sequently,  the formulation of Sect ion 111 is  appl icable .  The a d j o i n t  
equat ion (3.5) may be conveniently r ewr i t t en  wi th  ind ices  varying from 
1 t o m a s  

(4. loa) 

P9, = - &-)$ aflc -2)x PIf 
(4. lob) 

where the supe r sc r ip t s  have been used to  i n d i c a t e  the correspondence 
between the subscr ip ts  of (3.5) and the  i d e n t i f i c a t i o n s  i n  ( 4 . 9 ) .  

12 



l . 
To ca lcu la te  the p a r t i a l  der ivat ives  i n  
of (4,2), (4.3) and (4.4) a r e  required: 

3) dx. +%) dqi 
I h i x  

du 
j ax iq  

(4.10), the following d i f f e r e n t i a l s '  

(4.11) 

af .  i , k = 1 ,  ..., m . 

(4.12) 
'fi\ 

dfi  = m(k/u d\ + 2) du j j = 1, ..., n 
J X  

Subs t i tu t ing  (4.11) i n t o  (4.12) and (4.13) and rearranging y ie lds  

(4.13) 

(4.14) 

By holding x or q constant a s  required,  (4.14) and (4.15) can be used t o  
ca l cu la t e  the p a r t i a l  der iva t ives  i n  (4.10). The r e s u l t s  a r e  

(4.17) 
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. 
The only unknowns i n  the l as t  two equations a r e  

These par t ia l  der iva t ives  may be ca lcu la ted  from (4.5) as follows: 

du.  + -  dqk = 0. (4.18) "3 a U  ahr) J 'qk x,u dxk + - 
j x,q 

Holding q constant i n  (4.18) y ie lds  

i , k  = 1, ..., m 

j y r  = 1, ..., n 

ah 
(4.19) 

which represents  n equations i n  the  unknowns 

Consequently, i f  the a r r a y  

ah 

5) J X,q - 

where r is  the row index and j i s  the  column index - i s  nonsingular ,  

(4 
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. 
Holding x constant A 4-18) y ie lds  

or 

(4.21) 

With the aid of (4.20) and (4.21), the adjoint equations (4.16) and 
(4.17) become 

(4.22) 

(4.23) 
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. 
Equations (4 .3 )  - ( 4 . 8 1 ,  ( 4 . 2 2 )  and ( 4 . 2 3 )  can be expressed more s u c c m t l y  
i n  terms of the Hamiltonian which, f o r  t h i s  time minimal problem, is  

These equations can then be w r i t t e n  

qi + v 1 - %) axi = o  
tf 

H I t f  = 0 

r 

(4.24) 

(4 .25)  

(4 .26)  

(4 .27)  

(4 .28)  

( 4 . 2 9 )  

( 4 . 3 0 )  

-r 

(4 .31 )  
16 



r 1 

(4 .32)  

where the nonstandard t r i p l e  subsc r ip t  no ta t ion  ind ica tes ,  f o r  example, 
that 

axia9k ) x,u,q 

i s  t o  be evaluated by finding the p a r t i a l  de r iva t ive  of H w i t h  r e spec t  
t o  qk holding x and u constant  and then f ind ing  the  p a r t i a l  d e r i v a t i v e  
of t h i s  r e s u l t  wi th  respec t  to  xi by holding u and q constant.  Equa- 
t i o n s  (4 .24)  - (4 .32)  a r e  convenient when an  a n a l y t i c  d e r i v a t i v e  cal- 
cu la to r  such as IBM's FORMAC system is  ava i l ab le ,  s i n c e  a l l  d i f f e r e n t i a l  
equations are e s s e n t i a l l y  generated by the Hamiltonian. 

A numerical so lu t ion  of these equations proceeds as discussed i n  
Sect ion 111 and w i l l  no t  be repeated here.  
tions of the b a s i c  v a r i a t i o n a l  problem will be mentioned here.  
i nequa l i ty  cons t r a in t s  on the  s t a t e  and/or cont ro l  va r i ab le s  can be 
introduced and handled by the a d j o i n t  technique. 
j ec t  of a la te r  repor t .  
v ' s  i n  (4 .29)  are a l l  bu t  impossible t o  e l imina te  ana ly t i ca l ly .  
t i is  happens they 
ing a l l  q of the va's a r e  t o  be found, suppose q add i t iona l  d i f f e r e n t i a l  
equat ions of the  form Gl = 0 ,  ..., P state  d i f f e r e n t i a l  equations.  Their so lu t ions  are, of course, constants  
whose co r rec t  values  a r e  those which reduce (4 .29 )  t o  i d e n t i t i e s .  It is 
e a s i l y  v e r i f i e d  that t h e  Lagrange m u l t i p l i e r s  and a d j o i n t  va r i ab le s  in t ro-  
duced by these  new equations a r e  a l s o  constants .  Consequently, numerical 
s o l u t i o n s  of add i t iona l  new d i f f e r e n t i a l  equations a r e  not  required.  Haw- 
ever, formally,  there  a r e  now a t o t a l  of m + 2q + 1 terminal condi t ions of 

However, several modifica- 
F i r s t ,  

This w i l l  be  the sub- 
Second, i t  can happen that some or a l l  of the 

If 
can be made pa r t  of t he  convergence process. A s s m -  

= 0 are added t o  the b a s i c  se t  of 

17 



which q a r e  of no i n t e r e s t ;  i .e.,  q of them a r e  the  f i n a l  values  of net7 
Lagrange mul t ip l i e r s  which do not  en ter  i n t o  the problem so lu t ion  a t  a l l .  
Therefore, there  a r e  m + q + 1 terminal boundary condi t ions t o  be s a t i s -  
f i ed .  This requi res  q more in tegra t ions  of the a d j o i n t  equations where 
boundary conditions are given by 

a d a )  a = 2m - p + 1, ..., 2m - p + 1 + q  

a = 1, ..., 2m + q 
aza  

and (3.14a) can aga in  be used t o  ca l cu la t e  changes i n  the  guessed va's. 
Last ly ,  the ad jo in t  technique can be used t o  ca l cu la t e  cont ro ls  f o r  
neighboring extrema+ which can be usefu l  i n  guidance ana lys i s .  

V. EXAMPLES 

To reduce complexity, the d i f f e r e n t i a l  equations of motion of the  
f l i g h t  mechanical problems considered f o r  these examples w i l l  be w r i t t e n  
i n  two dimensions. Further ,  the re ference  p lane t  i s  considered sphe r i ca l  
and th rus t  l eve l s  a r e  constant .  Under these condi t ions,  the  equations 
governing the  motion of a rocke t  veh ic l e  operat ing i n  a vacuum (i .e. ,  
exo-atmospheric) can be w r i t t e n  

+ = f l  = - F cos a - ';2 GM cos 73 
m 

19 = f 2  = - F s i n  a + (r+ - v s i n  9 mv 

where 

F is the rocke t  t h r u s t ,  

(5.1) 

GM is  the  product of the un ive r sa l  g r a v i t a t i o n a l  constant  
and the re ference  p l ane t  mass, 

18 



v is the ve loc i ty ,  

m is the instantaneous rocket  mass, 

k is a given constant, 

r is the d is tance  of the rocket  from the  center  of the 
reference p lane t  , 

9 is the a+ngle between the rad ius  vec tor  ??and tbe v e l o c i t y  

a is the angle between the t h r u s t  vec tor  F and the  v e l o c i t y  

vec tor  v, 
3 

vector  3. 

Geametrical r e l a t i o n s  between these q u a n t i t i e s  a r e  i l l u s t r a t e d  below. 

There a r e  a t o t a l  of 8 v a r i a b l e s ,  namely, r, v,  19, m, F, a, k, and C% 
of which 3 - F, GM, K - a r e  known constants.  Since v, 9, r, and m are 
determined from (5.1), t he re  is one f r e e  v a r i a b l e  a, the cont ro l  v a r i a b l e ,  
which can be var ied  t o  minimize the time of t r a n s f e r  between the  given 
i n i t i a l  s t a t e  and the given terminal s t a t e .  I n  the development of the 
Euler-Lagrange equations and the  ad jo in t  equations,  the following corre-  
spoadences fo r  the  subscr ip ts  and va r i ab le s  a r e  made: 

1 =>v x1 => v 

2 => 9 x2 => 9 

3 => r x3 => r 

4 = > m  x4 =>m 
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which a r e  read. 
by -8, e t c .  The Hamiltonian ( 4 . 2 4 )  becomes 

Subscript  1 is  replaced by v ,  subsc r ip t  2 is replaced 

I F  
H = l + q v / -  

Lm 

+ q r  

cos a - 

v cos -8 

7 GM cos 91 + q4 [$ s i n  a + (++ - +) v sin-21 

+ qmk* ( 5 . 2 )  

The Euler-Lagrange equations ( 4 . 2 6 )  a r e  

- cos -8 qr 
1 \ GM \ = (5 s i n  a + s i n  -8 + - s i n  +J,) qd r 

GM - (s2 - b) v cos -8 q + v s i n  4 qr 
-8 

= -  sin -8 q 4-8 r ( 5  3)  

+J' 
s i n  a q  % =  mz + m2v 

F cos a 

The equation f o r  the cont ro l  v a r i a b l e  (4 .27)  is  

- F s i n  a q ,  +F cos a q  = o 
m mv -8 

o r  

20 

'9 

vqV 
tan a = -. ( 5 . 4 )  



The terminal boundary conditions (4.28) are 

dl) = v - vf)t = 0 

f 

The terminal boundary conditions (4.29) and (4.30) are  

) = o  qv + "v tf 

) = o  q-a + v7Y tf 

%)tf = O 

H)tf = 0. 

(5.6) 

(5.7) 

(5.8) 
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Since (5.1) and (5.3) a r e  a t o t a l  of e igh t  d i f f e r e n t i a l  equations,  t en  
boundary conditions are required.  Five of these a r e  given by the  assump- 
t i o n  t h a t  t he  i n i t i a l  boundary i s  known. Apparently, the remaining f i v e  
come from (5.5) - (5.8). Equations (5.5) must be s a t i s f i e d  so  t h a t  the 
remaining two conditions can be picked from (5.6) - (5.8). Actual ly ,  
equations (5.6) y i e ld  no new information. Hence, the  f i v e  add i t iona l  
boundary conditions occur on the  terminal boundary and a r e  given by 
(5.5), (5.7) and (5.8). A s o l u t i o n  of the  complete d i f f e r e n t i a l  system 
proceeds by guessing rf and the  missing i n i t i a l  boundary values and vary- 
ing them u n t i l  the  in t eg ra t ion  of (5.1) and ( 5 . 3 ) ,  using (5 .4 )  f o r  the 
con t ro l ,  s a t i s f i e s  (5.5), (5.7) and (5.8) a t  some Ef  = t f .  

I n  the j u s t  out l ined s o l u t i o n  procedure, and a l l  four i n i t i a l  
mu l t ip l i e r  values  were needed. Two a r t i f i c e s  can be used t o  reduce 
these f ive  i n i t i a l  guesses t o  th ree  guesses,  namely, f f  and two of t he  
i n i t i a l  mul t ip l ie r  values.  This can be done by noting t h a t ,  f i r s t ,  the  
Euler-Lagrange equations a r e  homogeneous i n  the  m u l t i p l i e r s  and, second, 
t h a t  t he  f i r s t  t h ree  of the Euler-Lagrange equations a r e  independent of 
the  fourth. Homogeneity means t h a t  f o r  any s o l u t i o n  s e t  { (qv ( t ) ,  q q ( t ) ,  
qr(t-17 qm(t)17 {kqv(t), kq3( t ) ,  k q r ( t ) ,  kqm(t>I  is a l s o  a s o l u t i o n  s e t  
where k # 0 i s  any r e a l  number. Consequently, f o r  the m u l t i p l i e r s  solv-  
ing the  problem, there e x i s t s  a k such t h a t  one of t h e i r  i n i t i a l  values  
may be fixed a t  some number N. (N i s  o f t e n  given the value 1.) For 
example, A ( t o )  # 0 of a s o l u t i o n  s e t  becomes 1 i f  k = l /A( to ) .  Requir- 
ing t h i s  condition a t  t h e  o u t s e t  reduces the  i n i t i a l  guesses by 1. 
second observation above, along with re lax ing  the  requirement t h a t  (5.7) 
be s a t i s f i e d ,  means t h a t  the i n i t i a l  value of qm(to) may be f ixed a t  
some convenient value,  say 1. The motivation f o r  doing so  is  t h a t  now 
there  a r e  th ree  a r b i t r a r y  parameters, E,, qv( to)  and q-g(to), say ,  t o  be 
picked ( i f  a s o l u t i o n  e x i s t s )  such t h a t  t he  th ree  boundary conditions 
(5.5) a r e  s a t i s f i e d .  This handling of qm introduces the  s i m p l i f i c a t i o n  
that now equations (3.14a) of t he  a d j o i n t  technique are  th ree  i n  number 
and easy t o  so lve  f o r  t h e  required i n i t i a l  co r rec t ions .  Addit ional ly ,  
qm(t) can s t i l l  be used i n  computing the  i n t e g r a t i o n  constant H which 
is  a n  a i d  i n  checking t h e  accuracy of t he  i n t e g r a t i o n  algorithm. 
t h a t  now H # 0.) 
from consideration, s ince  by assumption m i s  a known funct ion of t i m e ,  
b u t  t h i s  would have introduced an e x p l i c i t  time dependency i n t o  the s t a t e  
d i f f e r e n t i a l  equations which is not allowed i n  the  formulation i n  Sec- 
t i o n  11. (However, t can be introduced e x p l i c i t l y  i n t o  (2.1) and (3.1) 
with no r e s u l t a n t  d i f f i c u l t y  i n  the  a n a l y s i s  whatever.) 
remembered t h a t  these contrivances f o r  reducing the  i n i t i a l  guesses from 
5 to  3 are f o r  convenience and expediency i n  so lv ing  the  problem and 
t h a t  formally a l l  f i v e  should be used to  s a t i s f y  (5.5), (5.7) and (5.8). 
(It could be s a i d  that the  three-guess  s o l u t i o n  f i n d s  i n c o r r e c t l y  scaled 
mul t ip l i e r s  while y ie ld ing  the  c o r r e c t  con t ro l  program and the  minimum 
t r a n s f e r  t i m e  . ) 

The 

(Note 
The m u l t i p l i e r  qm could have been eliminated e n t i r e l y  

It should be 
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The ad jo in t  equations (4.31) and (4.32) become, a f t e r  some obvious 
cance l la t ion  and rearranging ( p i  and p$ a r e  ignored f o r  the  reasons given 
above) : 

8 

(5.9b) 
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6; = - L r( QV v cos a 1 + q s i n  a ) (+) sin's] p: 
d 

( 5 . 9 c )  

+ [(\ v cos a 1 + q s i n  (F/m) s i n  a cos a] p: + [$ s i n  d] p: 
4 

(5.9d) 

(F/m) s i n  a cos a pv 
v cos a 1 + q s i n  l x  9 

24 

+ [(* - L l  v cos 4 
5' 

(5.9e) 



(5.9f) 

A s  mentioned e a r l i e r ,  even f o r  the simple problem here,  the a d j o i n t  equa- 
t ions a r e  f a i r l y  lengthy. 
ing values of tf, qv(to) and q4(to) and in t eg ra t ing  (5.1) and (5.3) forward 
i n  time u n t i l  t = tf. 
and (5.9) along wi th  (5.1) a r e  integrated backward i n  time u n t i l  t = to. 
The s t a r t i n g  values fo r  the a d j o i n t  va r i ab le s  a t  t = tf a r e  ca lcu la ted  
from (3.9a) t o  be 

A so lu t ion  can proceed by f ix ing  qr( to) ,  guess- - 
- 

A t  t h i s  time, (5.5) w i l l  normally not be s a t i s f i e d  

- 

A t  time t = to, the integrated values of the a d j o i n t  va r i ab le s  correspond- 
ing t o  the  i n i t i a l  values of (5-10) are subs t i t u t ed  i n t o  equations (3.14a), 
which b e came 

(5.11) 
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The right-hand s ides  of (5.11) r ep resen t  a f r a c t i o n a l  por t ion  of the d i f -  
fe rence  between the des i red  terminal s t a t e  values  and the  a c t u a l  terminal 
s ta te  values f o r  t h i s  p a r t i c u l a r  in tegra t ion .  Equations (5.11) are solved 
f o r  the  increments 6qv(to), 6qd(to),  d t f  and a forward in t eg ra t ion  is 
attempted wi th  new i n i t i a l  values  

(5.12) 

and a new cut-off time 

new o ld  - f, = tf + d t f .  (5.13) 

I f  the f r ac t iona l  terminal s t a t e  v i o l a t i o n s  have not  been reduced by 
t h i s  forward in tegra t ion ,  the increments j u s t  computed are reduced by 
some f ac to r ,  say 1 /2 ,  (5.12) and (5.13) are recomputed and a new forward 
i n t eg ra t ion  is made. This s t e p  is done as many times as requi red  t o  
achieve a reduction i n  the  terminal s ta te  v io l a t ions .  
has a so lu t ion ,  t he re  w i l l  be  a reduct ion  a f t e r  f i n i t e l y  many steps. )  
I f  equations (5.5) are aga in  not  s a t i s f i e d ,  a new cycle  of backward and 
forward in tegra t ion  is  i n i t i a t e d ,  the  whole process being done as many 
times as necessary t o  achieve convergence. (Cl, C2,  and C3 are increased 
as the  l i nea r  pred ic t ions  become increas ingly  more accura te . )  

(If the  problem 

I 

The f i r s t  numerical example considered is that of t r a n s f e r r i n g  a 
rocke t  vehic le  from a 100 nm (185.2 km) a l t i t u d e  c i r c u l a r  o r b i t  t o  a 
300 nm (555.6 km) a l t i t u d e  c i r c u l a r  o r b i t  w i th  the  earth as the only 
g rav i t a t iona l  body. 
given i n  Table 1. 

The assumed veh ic l e  and e a r t h  model parameters are . 
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. 

Radius = 6370 km 

TABLE 1 

Vehicle 1 
F = 50 lb f  

I n i t i a l  Weight = 500 lb f  

I s p  = 400 sec 

I I (;M = 3.98059389 x lo5 km3/s2 

P r a c t i c a l l y  speaking, the engineering u n i t s  a s  t yp i f i ed  i n  Table 1 a r e  
not  the b e s t  u n i t s  i n  which to  solve the problem. In order that the 
var ious elements of the terms i n  the a d j o i n t  equations be taken account 
of most accura te ly ,  it is  advantageous t o  s c a l e  the u n i t s  so that the 
problem va r i ab le s  a r e  of the  same order of magnitude. Ordinar i ly  t h i s  
is accamplished by wr i t ing  the equations i n  an appropr ia te  nondimensional 
form. Here, however, the nondimensionalized form is achieved by properly 
sca l ing  the var ious input  var iables .  In  t h i s  way a n  engineering s o l u t i o n  
can a l s o  be obtained by unscaling these input  va r i ab le s .  
s ca l ing  is  achieved by adopting the ea r th ' s  radius  as the u n i t  of length 
and requi r ing  (;M = 1 i n  the scaled un i t s .  This r e s u l t s  i n  805.81475 s e c  
as the u n i t  of time. m e  vehicle 's  i n i t i a l  mass can be used a s  the u n i t  
of mass. With these sca l ing  f ac to r s ,  the i n i t i a l  s t a t e  i s  

A convenient 

r =  6555*2 = 1.0290738, vo =Go = .98577260 o 6370 

do = 90°, m = 1. 
0 

The terminal s t a t e  is 

r =  6925e6 = 1.0872214, vf = %  = .95904947, .9f = go", f 6370 
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mf t o  be maximized; q r ( to )  and qm(to) were kept  f ixed  a t  qr ( to)  = +1 and 
qm(to) = +l. 
and qd(to)  = +l. The cutoff  time w a s  i n i t i a l l y  guessed as - 7  
sca led  uni ts .  
were doubled o r  halved as the i t e r a t i o n  proceeded according t o  whether i t  
took more or l e s s  than three  forward in t eg ra t ions  per cycle  t o  reduce the  
terminal boundary v io l a t ions .  The terminal boundary condi t ions were 
achieved t o  8 decimal places  wi th in  10 tr ials.  Using an  in t eg ra t ion  time 
s t e p  corresponding t o  20 sec ,  the Hamiltonian was constant  t o  5 decimal 
places  using Runge-Kutta 4 th  order  i n t eg ra t ion  formulas. The . f ina1  cut-  
o f f  time was 1.3718816 sca led  u n i t s  i nd ica t ing  that the i n i t i a l  guess was 
wrong by a f ac to r  of .5. Figure 1 summarizes the cont ro l  h i s t o r y  as the 
tr ials progressed. Figure 2 summarizes the  r - v h i s t o r y  of the  trials. 
The converged values  of qv and q4 were qv(to) = .38828166 and qq(to)  = 
-.54702046. Both f igu res  ind ica t e  that the  i n i t i a l  guesses were q u i t e  
bad. 

The i n i t i a l  values of qv and q9 were guessed a t  qv(to)  = +1 

The C ' s  of equation (5.11) were i n i t i a l l y  s e t  a t  .03 and 

Vehicle 

F = .127 lb f  

I n i t i a l  Weight = 1500 lb f  

I s p  = 5700 s e c  

The second numerical example involves t h i s  same veh ic l e  i n  an 
escape mission. 
was chosen t o  be rf = 2.0175824, vf = 1.6, df = 45", mf maximized. The 
energy of t h i s  terminal s ta te  is typ ica l  of  a l o w  energy mission t o  Mars. 
The i n i t i a l  values of qv and q4 were guessed as +1 each, and the  cu tof f  
time was guessed as 2.23. 
sequently halved o r  doubled as before.  This t i m e  terminal boundary con- 
d i t i o n s  were achieved t o  8 decimal places  i n  18 tr ials.  The Hamiltonian 
was constant t o  5 decimal places  using a time s t e p  equivalent  t o  40 seconds. 
The f i n a l  cutoff  time was 4.4778898, while  the  converged values  of  qv and 
qq were q v ( t o )  = +.23594021 and qd ( to )  = -.49928473. 
a r e  summarized i n  Figure 3 and r - v p l o t s  a r e  given i n  Figure 4. 

The i n i t i a l  boundary is  the same and the terminal s t a t e  

The C ' s  were i n i t i a l l y  s e t  a t  .015 and sub- 

The cont ro l  h i s t o r i e s  

& 

A th i rd  numerical example, picked from the l i t e r a t u r e ,  is an  Earth- 
Mars in te rp lane tary  t r a n s f e r  mission. 
i n  coplanar, c i r c u l a r  o r b i t s  about the sun. Adopting the astronomical 
u n i t  as the u n i t  of length,  and requi r ing  the h e l i o c e n t r i c  GM t o  equal 1 
i n  the  scaled system leads t o  a time u n i t  of 58.13504 days. The veh ic l e  
parameters a r e  shown i n  Table 11. 

Earth and Mars a r e  assumed t o  be 

The i n i t i a l  s t a t e  is ro = 1, vo -9 1, 

TABLE I1 
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4, = goo, mo = 1. 
and mf maximized. 
and the cutoff time guessed as 1.66. 
.00015 and the in t eg ra t ion  t i m e  s t ep  was s e t  equiva len t  t o  5 days. 
Boundary conditions were achieved t o  8 decimal places i n  26 trials wi th  
the Hamiltonian being held constant t o  4 decimal places.  
o f f  time was 3.3194012 wi th  the converged values of qv and qq being 
qv(to) = 1,0784030 and qd( to)  = -.49498598. 
are shown i n  Figure 5, and r - v p lo t s  a r e  shown i n  Figure 6 .  

The terminal state is  rf = 1.525, vf = .8098, .ijf = 90°, . 

Again, qv and qq were i n i t i a l l y  s e t  equal t o  +1 each 
The C's  were i n i t i a l l y  se t  a t  

The f i n a l  cut-  

Typical con t ro l  h i s t o r i e s  

The fou r th  and last numerical example involves launching a two-stage 
veh ic l e  i n t o  a l o w  c i r c u l a r  e a r t h  o r b i t .  The equations of motion a r e  
w r i t t e n  i n  a two-dimensional earth-fixed coordinate system, The e a r t h  is 
assumed sphe r i ca l  and i t s  atmosphere i s  modeled by an exponential  function. 
The drag and l i f t  coe f f i c i en t s  of the veh ic l e  a r e  assumed t o  be constants.  
The d i f f e r e n t i a l  equations a r e  

7 L m " I  D 
m F cos a - a cos 9 + [J' r cos 4 - - cos a - - s i n  a + " f l = -  

m 

F (e2 - +) v s i n  4 + [s cos a - - D s i n  a 5 = f E = - s i n a +  mv mv 

1 s i n  4 - 2w' ut 2r - -  
V 

i. = f 3  = v cos 9 

where 

D = axial force = 1/2 cdo ~ V * A ~  

(5.14) 

N = normal fo rce  = 1 /2  CnopV2Asa 

p = atmosphere dens i ty  = poe -Q ( r - re)  

w' = w cos cp s i n  A, 

33 



n 

c c 
0 
0 

0 
0 
r+) 

0 
0 cu 

0 
0 
v 

0 

3 4  



*- 

L 
X 

c c 
0 

LL 

.- 

- 
0 
c .- 
E 
L co 
U 
0 
L 

Y) 
0 
0 

.- 

Y) 
1 

(0 0. 
i c 

cu 
v 

Ilb 

P 
P 
L 

2 

0 0 0 0 0 0 0 
0 0 0 0 0 0 

0 0 0 
0 
0 
r3 (u 'c.. 0 Q) QD cc L. 

0 - 0 
a a 

0 
L. a - 

v v F r 

cu us 
QD 
c 

w -  e 

* O  
tu- 30 

4 - 

' L z  
U 

8 
0 

LL 
a 

35 



and 

is the a x i a l  force  coe f f i c i en t  cdO 

i s  the normal force  coe f f i c i en t  
cnO 

As i s  the re ference  f r o n t a l  area of the veh ic l e  

po i s  the  atmospheric dens i ty  a t  the e a r t h ' s  su r f ace  

Q is the inverse of the s c a l e  height  

w is the ear th ' s  r o t a t i o n a l  r a t e  

re is  the  e a r t h ' s  rad ius  

cp i s  the launch l a t i t u d e  

A, is the launch azimuth 

and the  other terms a r e  as defined i n  (5.1). There are a t o t a l  of 17 
va r i ab le s  - r y  V y  4, my F y  GM, Cpy A,, Cdo, CnoJ A s ,  po, Q, re ,  k, a - 
of which 1 2  (F, GM, ~ ' , q ,  A,, cdo, Cnor As, po, Q ,  re, k )  are  known con- 
s t a n t s .  Equations (5.14) determine r ,  v,  6, m s o  that aga in  one f r e e  
v a r i a b l e  a is  ava i l ab le  t o  minimize the t r a n s f e r  time from the given 
i n i t i a l  s t a t e  t o  the given terminal s t a t e .  Using the s u b s c r i p t  no ta t ion  
defined previously,  the  Hamiltonian (4.24) becomes 

m 
GM 2 H = 1 + qv (i cos a - 7 cos 6 + w1 r cos 9 - - r m 

s i n  a + qd [% s i n  a + ($+ - +) v s i n  9 + - N cos a - 
mv 

(5.15) 
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The Euler-Lagrange equations (4.26) can be written 

As P w12r sin 9 1  (cdo s i n  a - Go a cos a) z- - V 2  
+ { 
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The cont ro l ,  a, is obtained from ( 4 . 2 7 )  which becomes 

Notice that (5.14), (5.16) and (5.17) a r e  i d e n t i c a l  with (5.1), (5.3) 
and (5.4) except f o r  the bracketed terms which represent  the e f f e c t  of 
the  ea r th ' s  r o t a t i o n ,  the  assumed atmosphere and veh ic l e  aerodynamics. 
The terminal boundary conditions a r e  given by (5.5). The a d j o i n t  equa- 
t ions  a r e  much too lengthy t o  be l i s t e d  here. 
necessary f o r  s u b s t i t u t i o n  i n t o  t h e i r  general  formulas, (4.10), a r e  
l i s t e d  i n  Appendix 11. 

However, the par t ia ls  

The vehicle ,  aerodynamic, and launch parameters a r e  given i n  
Table 111, The formulation so f a r  has not allowed f o r  d i s c o n t i n u i t i e s  
i n  any of the va r i ab le s ,  and thus is  not  d i r e c t l y  appl icable  t o  a veh ic l e  
having s tages  with d i f f e r e n t  c h a r a c t e r i s t i c s .  The veh ic l e  described by 
Table I11 has d i scon t inu i t i e s  i n  t h r u s t  and mass a t  the f ixed s tag ing  
times which cause the d i f f e r e n t i a l  equations involving these two var i ab le s  
t o  a l s o  be discontinuous a t  these times. However, these types of discon- 
t i n u i t i e s  introduce no d i f f i c u l t i e s  s ince  it has been demonstrated i n  the 
l i t e r a t u r e  that the Lagrange m u l t i p l i e r s  a r e  continuous across  f ixed  s t ag -  
ing times when these times a r e  independent of the  s t a t e .  The Hamiltonian 
is  discontinuous a t  these s t ag ing  times, bu t  the amount is  unimportant and 
i t  s t i l l  i s  a constant  f o r  each s tage.  The demonstration of these f a c t s  i s  
s t ra ightforward and starts by def ining funct ions dependent on the  s t a t e  
va r i ab le s  and time which determine the s t ag ing  times and the magnitude of 
the d i scon t inu i t i e s  a t  these s tag ing  times. These funct ions a r e  adjoined 
t o  (2.4) with new Lagrange m u l t i p l i e r s ,  and the  i n t e g r a l  appearing i n  
(2.4) is divided i n t o  parts over which i t s  arguments a r e  continuous. The 
f i r s t  v a r i a t i o n  of the new (2.4) obtained i s  s e t  equal t o  zero,  and an 
i n t e r p r e t a t i o n  of the r e s u l t  y i e lds  the preceding s ta tements  f o r  the 
special  case of f ixed  s tag ing  times. The main r e s u l t  of t h i s  discussion 
is that the so lu t ion  technique a l ready  discussed holds.  
be taken a t  the s tag ing  poin ts  that the discontinuous d i f f e r e n t i a l  equa- 
t i ons  a r e  handled cor rec t ly .  

Care simply must 
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Vehicle 

1 s t  Stage 

Initial  Weight 

F 

lSP 
Staging Time 

2nd Stage (Coast) 

F 

Staging Time 

Weight Drop 

Aerodynamic 

A s  25 m2 

PO 13133546 

1,000,000 lbf  

1,600,000 lb f  

300 sec 

105 sec 

0 lbf  

115 sec 
140,000 lbf  

200,000 l b f  

420 sec 

Q -13623243 x (l/km) 

QO -5  

Cno 5 

Launch 

w -72921157 x lo'* (rad/sec) 

p 28.28" 

A, 72" 
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The pr inc ipa l  d i f f i c u l t y  introduced by adding the  atmosphere i s  the 
so lu t ion  of (5.17) f o r  the  control .  It has not  been mentioned thus f a r ,  
b u t  t he  co r rec t  value of a computed from (4.27) is  the  value that maxi- 
mizes the  Hamiltonian. This statement can be proven by a n  app l i ca t ion  
of the Pontryagin maximum p r inc ip l e  o r  the Weiers t rass  
Since the  so lu t ions  of (5.4) a r e  per iodic  wi th  period R, a t  most two 
so lu t ions  a r e  poss ib le  i n  the i n t e r e s t i n g  range -rc < a 5 K. 
these maximizes the  Hamiltonian, the o ther  minimizes it. For the vacuum 
f l i g h t s  (5.4) does indeed maximize the Hamiltonian (as long as q r ( to )  > 0). 
The s i t u a t i o n  f o r  (5.17) i s  q u i t e  d i f f e ren t .  F i r s t ,  so lu t ions  are not 
per iodic  with period rc (except i n  the l i m i t  f o r  l a rge  a). 
are mul t ip le  so lu t ions  i n  the range - K  < a 5 K. 

t i o n  of (5.17) w i l l  be discussed next. 

E-function t e s t .  

One of 

However, t he re  
The d e t a i l s  of the solu-  

Equation (5.17) i s  of  the  form 

(A + Ba) tan a = C + D a  (5.18) 

where A, B, C ,  D a r e  funct ions of v, m, F, Cd,,, Cn , As, qv and qg. 
left-hand s i d e  (L.H.S.) of (5.18) i s  the  product o'l a l i n e a r  func t ion  and 
a trigonometric function. 
f a c t o r  s i n c e  (A + Ba) has the p r inc ipa l  e f f e c t  of increas ing  t a n  a i n  
absolu te  value. A graphical  representa t ion  of  the L.H.S. of (5.18) 
d iv ides  e s s e n t i a l l y  i n t o  four  d i f f e r e n t  cases:  
B 5 0. 
taneously. 
Figures 7a and 7b. 

The 

The l i n e a r  term i s  c a l l e d  the  magnif icat ion 

A 2 0, B "> 0 and A < 0, 
An important subcase occurs when A + Ba = 0 and la1 = n/2 simul- 

A t yp ica l  r ep resen ta t ion  f o r  A > 0 and B 5 0 is  shown i n  
A so lu t ion  of (5.18) is thus represented by the 

I 
I 

Tan a A 
( 0 )  

Figure 7 
40 
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c 

intersection of a straight line (the right-hand side (R.H.S.) of (5.18)) 
and the dotted lines (the L.H.S. of (5.18)) in  Figure 7 .  
the values assumed by C and D, there are a t  most four solutions. 
there are a t  most two solutions per quadrant. 
are two solutions. 
special treatment. Taking a = - d 2 ,  then A + B(-~r/2)  = 0, implies 
A = B ( d 2 ) .  Therefore, (A + Ba) tan a becanes 

Depending on 
Further, 

Notice that always there 
The special case A + Ba! = 0 and la1 = a/2 requires 

B (t + a) tan a. 

This is an indeterminant of the form 0 -m as 

Yc+ a+- - 2 -  

However, its l i m i t  does exist and is evaluated by L'Hospital's rule as 
follaws: 

= - B l im sin% = - B. 

A similar evaluation for 
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yields 

l im B (; + .> tan a = -B. 
z- a + -  - 2 

Thus, 

B ($ + a) tan a 

possesses a removable discontinuity a t  a = - d 2  and 

B (g + a) tan a 

i s  continuous everywhere in  [-a, 01. Thus, Figure 7a would became Fig- 
ure 8:. A similar resul t  would hold for Figure 7b. The conclusions 
from Figure 7 s t i l l  hold. A solution of (5.17) proceeds on the basis  of 

42 

-7l 

-?I I 
Tan (I 

I I' I 

Figure 8 



4 

these conclusions. a H ( a ) / h ,  i.e., (5.17), i s  evaluated a t  increments 
of rc/2 i n  the range [-E, XI. If its s ign  changes a t  the end points  of 
any of the subin terva ls ,  a root  e x i s t s  wi th in  t h i s  subin te rva l .  
s ign  of aH/& does not change, the s i g n  of a2H(a)/d$ is examined. I f  
it changes, there  a r e  two roo t s  i n  that subinterval .  These two roo t s  
a r e  placed i n  appropriate  smaller subin te rva ls  by evaluating aH/& with in  
t h i s  subinterval .  
f i nd  roo t s  within the i n t e r v a l s  i n  which they have been i so la ted .  
modif icat ion is as follows. 
r o o t  has the  form 

I f  the  

A modified Newton-Raphson procedure is then used t o  
The 

The normal Newton-Raphson i t e r a t i o n  f o r  a 

The modified form is  

where K1 = t.1 and 0 < K, 6 1. 
t a t i o n s ,  bu t  it w i l l  s u f f i c e  here t o  say  that K2 limits the sequence of 
d s  t o  l i e  within the i n t e r v a l  the r o o t  has been i so l a t ed  within and K, 
causes the s i g n  of the der iva t ive  t o  agree with the s ign  of the f i n i t e  
increment s lope  found i n  the process of i s o l a t i n g  the root .  In  t h i s  
manner, a l l  the roots  a r e  found i n  the in t e rva l  -5c < a 6 rc. Each is Sub- 
s t i t u t e d  i n t o  the Hamiltonian and the one maximizing H is picked as the  
cont ro l .  A typical v a r i a t i o n  of H(a) is shown i n  Figure 9. .  In  use, 
the foregoing procedure is  very r a p i d  and the three  roo t s  indicated i n  
Figure 9 would be found t o  e ight  s i g n i f i c a n t  f igures  i n  four  or f i v e  
i t e r a t i o n s  per root.  

K, and K2 can be given geane t r i c  in te rpre-  

The mission f o r  the two-stage veh ic l e  described i n  Table 111 is the  
a t ta inment  of a c i r cu la r  o r b i t  a t  194.6 km a l t i t u d e .  
g iven  i n  the  f i r s t  numerical example, the i n i t i a l  s t a t e  is ro = 1.0004223, 
vo = .020240245, -8, = 6O, and wo = 1. 
vf = -98506657, df = 90" and wfrnaximized. 
qq were guessed as +.1 and 0, respec t ive ly ,  and the cutoff  time was guessed 
a s  .67. The C's were i n i t i a l l y  s e t  a t  ,0001. Terminal boundary conditions 

Using the scaling 

The terminal s t a t e  is rf = 1.0305494, 
The i n i t i a l  values  of qv and 
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Figure 9 

were achieve1 t o  8 decimal places  i n  29 t r ia ls  wit. ,  the  Hami&tonian being 
held constant t o  5 decimal places .  A time-step equiva len t  t o  10 seconds 
w a s  used, The f i n a l  cutoff  time w a s  .7906737, and the  converged values  
of  qv and q9 were qv(to)  = .074358687 and qd( to)  = .0032090726. Control 
h i s t o r i e s  a r e  given i n  Figure 10, and r - v p l o t s  a r e  shown i n  Figure 11. 

VI. CONCLUSIONS 

The a d j o i n t  method has been shown t o  be a powerful t oo l  i n  the solu-  
t i o n  of two-point boundary value problems. In  p a r t i c u l a r ,  f o r  v a r i a t i o n a l  
problems t rea ted  v i a  the Lagrange m u l t i p l i e r  technique, so lu t ions  are 
f reed  qu i t e  d r a s t i c a l l y  from dependence on the  i n i t i a l  m u l t i p l i e r  values .  
With respec t  t o  the numerical examples of the t e x t ,  the  number of t r ia ls  
necessary f o r  convergence i n  the  second and t h i r d  examples  could have 
been e a s i l y  c u t  i n  ha l f  by guessing even remotely reasonable  cu tof f  
times. For the  atmospheric e x a m p l e ,  the number of tr ials could have been 
reduced considerably by using a smaller  time s t e p  i n  the  i n t e g r a t i o n  
algori thm s ince  terminal boundary condi t ions had been s a t i s f i e d  t o  2 
decimal places a f t e r  15 tr ials.  Generally,  the convergence process pro- 
ceeds more r ap id ly  the smaller  the i n t e g r a t i o n  t i m e  s t e p .  This is because 
the inf luence funct ions a r e  obtained more accura te ly .  The time s t e p  requi red  
f o r  accurate  forward in t eg ra t ion  i s  gene ra l ly  not  the same as that f o r  accur- 
a te  backward in tegra t ion .  There is a t rade-off  between how accura t e ly  the  
inf luence funct ions need t o  be obtained t o  so lve  the  problem and how many 
trials a r e  required.  Usually, the time-step f o r  a backward i n t e g r a t i o n  
needs t o  be smaller than f o r  a forward i n t e g r a t i o n  f o r  equiva len t  degrees 
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of accuracy. 
programning problem caused by the backward i n t e g r a t i o n  and the  t i m e  
penal ty  incurred, because the state equations m u s t  be in tegra ted  back- 
ward as w e l l  as forward (or t h e i r  forward values saved on t a p e  and then 
in te rpola ted  during the backward in tegra t ion) .  An almost one-third can- 
pu ta t iona l  time saving can be achieved i n  launch and a scen t  problems by 
using v e l o c i t y  as the cut-off c r i t e r i a .  
f o r  this purpose s ince  i t  is usual ly  a monotonically increasing func t ion  
of t i m e  i n  t h i s  type of problem. 

Two disadvantages of the a d j o i n t  technique a r e  the  s l i g h t  

Velocity is an acceptable  func t ion  
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APPENDIX I 

I n  the ordinary d i f f e r e n t i a l  ca lcu lus ,  t h e  no ta t ion  dy denotes an 

I n  the  ca lcu lus  of v a r i a t i o n s ,  Sy denotes an i n f i n i t e s i m a l  
i n f i n i t e s i m a l ,  i . e . ,  a change i n  the v a r i a b l e  which can be made as small 
a s  des i red .  
change in  the funct ion Y; i . e . ,  Sy is a v a r i a t i o n  of y(x) .  
func t ion  i s  denoted f ( x )  and the changed func t ion  denoted y(x),  then 
y(x) = F(x) + e. 
saying y(x) = ?(x) + ka’(x), where k i s  an a r b i t r a r y  constant  and g ( x )  is 
independent of k and continuous over the  same range t h a t  F(x) is continuous. 
For example, the  s t r a i g h t  l i n e  7(x) = x, 0 5 x S 1, can be deformed i n t o  
the  parabola y(x)  = x2, 0 5 x 5 1, by def in ing  @(x) = x2 - x. 
y(x) 
When k = 1, the var ied  funct ion is the parabola.  
i l l u s t r a t e s  how a given funct ion can be deformed in to  another given 
funct ion.  

I f  t he  o r i g i n a l  

The change (va r i a t ion )  can be made more explicit by 

Then, 
x + k(x2 - x) .  Thus, when k = 0 the  o r i g i n a l  func t ion  is re ta ined .  

This l i t t l e  example 

Ideas a re  f ixed more firmly with the following de f in i t i ons :  

Def. 1 L e t  y(x) and y(x) be uniformly continuous funct ions i n  the  
i n t e r v a l  xo 5 x 5 XI. 

neighborhood NE: of f(x) i f  and only i f  f o r  every E > 0, 
Then y(x)  is  sa id  t o  l i e  i n  a s t ronq  

lY(X) - ? ( d  I 5 e. 

Def. 2 Let  y(x) and y(x) be d i f f e r e n t i a b l e ,  uniformly continuous 
Then y(x) is s a i d  funct ions i n  the i n t e r v a l  xo 5 x 5 XI. 

t o  l i e i n  a weak neighborhood N, of y(x) i f  and only i f  f o r  
every E: > O x ( x )  - Y(x) 1 I E: and 

Strong v a r i a t i o n s  are assoc ia ted  with Def. 1 and weak v a r i a t i o n s  are 
assoc ia ted  with Def. 2. Futhermore, v a r i a t i o n s  a r e  (1) s p e c i a l  if t h e  
independent va r i ab le  is not var ied  and (2) general  i f  the  independent 
v a r i a b l e  is  var ied .  Almost exclusively s p e c i a l ,  weak v a r i a t i o n s  (although 
very  o f t e n  t h i s  i s  not  s t a t e d  e x p l i c i t l y )  are used i n  der iv ing  the neces- 
s a r y  condi t ions f o r  extremals i n  the  v a r i a t i o n a l  ca lcu lus .  

Now consider a funct ion of more than one argument, say ( ( x ,  F1, ..., 
Consider the e f f e c t  of rep lac ing  d 9m, y i ,  ... , ?A), where 7; = dx yi .  

each of t he  ar uments by i ts  varied value; i .e . ,  T i  is replaced by 
yi + k@i(x),  y i  is replaced by 9; + k&(x) ,  etc. I f  ((x, j+i, ..., 
Ti, . . . , 7;) has a series representa t ion ,  then 

-v 
Tm 9 

1 

+r 1 €jnc + ..., 
n. 
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. 

where E [ ,  S2(, . . . , 8°C a re  the  lSt, 2nd, and nth va r i a t ions  of 5 and 
symbo 1 i c a l  l y  

- -  Subs t i tu t ing  successively ?I, ..., ym, yl,  ..., Trn f o r  ( y i e l d s  

S i ,  = k& ST,  = 0 ... 6nyl = 0 

8irn = k&, = o  ... = o  

d Wj 1. d from which follows e a s i l y  t h a t  S?j = k g j  = - d t  (kP’j) = dt 

When the end point  of a v a r i a t i o n a l  problem i s  no t  f i xed  but  ins tead  
i s  allowed a general  v a r i a t i o n ,  the  t o t a l  change i n  the  end po in t  value 
i s  found as follows. Referring t o  the drawing, y ( t )  i s  the  va r i ed  curve 
and y ( t )  i s  the  o r i g i n a l  curve; y ( t )  must be extended over  the  i n t e r v a l  
At. Then, s ince y ( t )  and y ( t )  are assumed d i f f e r e n t i a b l e ,  
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i -  

where l i m  c1 0. 

A t 3 0  

Since Def. 2 holds, 

I9(to> - $(to) I < E 
or 

$(to)  = ?(to) + €2 

where lim c2 = 0. 

Substituting (1-2) into (1-1) yields 

where 6 y ( t o )  = y(to)  - y(to) by definition. 
part of the total change in  the end point is  

(1-3) shows that the principal 
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APPEM)IX I1 

i . -  The d i f f erent ia l  equations for the influence functions are obtained 
by substituting the following partials into  (4.22) and (4.23): 

, 
= s i n  3 - w1 2 1: s i n  3. X r  

a; s i n  a + ((cdo - ko) s in  a - L a  cos a) 

, -  
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a; = cos 4 

a; x=O 
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2w' 2 r s i n  9 

q9' 
- 

Vd 

2 
w' 1: cos ij 

V-= q9' 
- s i n  9 qr + 

d 
9 q  
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- w1 2 r cos -8 q, 
F r  a2H = cos 4 9vm - ( a  - + ) v s i n d q  79 - 'Os q r  

2 
u1 1: s i n  79 

479' + 
V 

6GM +("" - ;?.> v s i n  79 q - 9 , -  79 
a2H = - 7 cos 79 F r  
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